GEOGEBRA: Software Geometría dinámica ¿Por qué? ¿Cuando? ¿Cómo?

CURSO ASESORES EN COMPETENCIA MATEMÁTICA

Alberto Arnal Bailera – Área de Didáctica de la Matemática – Universidad de Zaragoza

Geometría Dinámica. Introducción

GEOMETRÍA ESTÁTICA

GEOMETRÍA DINÁMICA

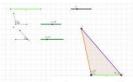
Presenta figuras estáticas:

- Una posición particular.
- Una concepción particular.
- Una figura particular.

Las figuras varían, se mueven, adquieren dinamismo:

- Una posición cualquiera.
- Una concepción más general.
- Una figura cualquiera.

Geometría Dinámica. Introducción


Posibilita el uso de estrategias heurísticas:

- Mover la figura.
- Considerar casos particulares y casos límites.
- Medir y comparar.

Geometría Dinámica. Introducción

3 Construcción de un triangulo dados 1 lado y los dos ángulos adyacentes

3a- Construye triángulos que tengan las siguientes medidas:

 $5~\mathrm{cm}.,\,80^{\circ},\,40^{\circ}$ ¿Cuánto mide el ángulo del vértice A?

6 cm., 80°, 40° ¿Cuánto mide el ángulo del vértice A?

7 cm., 80°, 40° ¿Cuánto mide el ángulo del vértice A?

3b ¿Qué ha pasado?

3c ¿Podrías dar una explicación?

3d- Construye triángulos que tengan las siguientes medidas:

6 cm., 100°, 50° ¿Cuánto mide el ángulo del vértice A?

6 cm., 110°, 60° $\dot{\iota}^{\rm Cu\'{a}nto}$ mide el ángulo del vértice A?

6 cm., 130°, 60° ¿Cuánto mide el ángulo del vértice A?

3e ¿Qué ha pasado?

3f ¿Podrías dar una explicación?

¿Qué tratamos de conseguir?

- Promover el aprendizaje activo de los alumnos:
 - Resolución de problemas:
 - Ensayando procesos de búsqueda.
 - Planteando conjeturas.
 - Realizando comprobaciones experimentales.
 - Estudio y comprobación de propiedades geométricas.
 - Desarrollando habilidades en el uso de la tecnología.

El trabajo debe estar orientado a...

- 1. Concentrarse en el proceso de resolución de problemas y no sólo en el cálculo formal clásico de la geometría (cálculo de áreas, volúmenes...)
- 2. Explorar, desarrollar y reforzar conceptos y relaciones geométricas.
- 3. Buscar relaciones, plantear conjeturas, dando acceso a otras formas de pensamiento más allá de la repetición de algoritmos.
- 4. Acercarse a la demostración de propiedades de las figuras geométricas, mediante la exhaustiva comprobación que los programas permiten.

¿Por qué usar GeoGebra?

- El uso de la pizarra tradicional en la ilustración de los contenidos de Geometría tiene la (obvia) limitación de no ser posible mostrar más de unos pocos ejemplos en clase.
- Fenómeno de la ilusión de transparencia: "mientras los profesores interpretan un ejemplo como modelo o representante de una clase, los alumnos ven solamente un ejemplo concreto"

PASAR DEL OBJETO AISLADO AL REPRESENTANTE DE UNA CLASE

Momentos de uso de GeoGebra

- Exploración ejercicios y problemas.
- Ilustración propiedades.
- Demostración propiedades.
- La dualidad ejemplo-clase es esencial.

Momentos de uso de GeoGebra

- Exploración: Utilización de modelos construidos para resolver ejercicios y problemas con el objeto de inferir propiedades todavía desconocidas de una figura o construcción mediante la manipulación de dichos modelos.
- **Ejemplo:** Estudio de la relación entre coeficientes de rectas paralelas.

Momentos de uso de GeoGebra - Ilustración

- Ilustración: Se presenta una construcción que muestra la veracidad de la propiedad dada y sirve como modelo manipulativo en una pizarra digital.
- **Ejemplos:**
 - Estudio de los puntos notables de un triángulo.
 - Función a trozos.

Momentos de uso de GeoGebra – Demostración

- <u>Ejemplos:</u> Un triángulo es rectángulo si y solo si la mediana desde el ángulo recto mide la mitad que la hipotenusa.
- 1. Construir triángulo no necesariamente rectángulo.
- Construir la mediana respecto A.
- 3. Mostrar medida del ángulo A y de los segmentos.
- 4. Arrastrar los vértices para comprobar que solo cuando la medida es 90° resultan segmentos iguales.

¿Cómo usar GGB? Tipos de arrastre

La función más importante: "arrastrar" objetos y observar cómo varía dinámicamente la figura:

- Arrastre de test (test): Arrastre para comprobar que la construcción conserva las condiciones matemáticas que queríamos imponer. ¿Sigue siendo un cuadrado?
- Arrastre errático (wandering): Arrastre sin plan específico.
 Exploración inicial de la figura buscando invariantes matemáticos sin ideas previas.
- Arrastre guiado (guided): Arrastre para buscar un caso particular de la figura construida.
- Arrastre sobre lugar geométrico (dummy locus): Arrastre procurando que se conserve alguna propiedad matemática que no es válida para la figura construida. El recorrido de algún punto marca un lugar geométrico oculto. Comando "traza".

Etapas en la resolución de problemas de conjetura y demostración Etapas de resolución de un problema de conjetura y demostración Tipos de arrastre Construcción inicial Descubrimiento de propiedades Errático Sobre un 1. g. oculto Guiado Elaboración de una conjetura Verificación de la conjetura Test Guiado Construcción y validación de una figura Demostración de la conjetura Arrastre para validar las propiedades y conjeturas encontradas Arrastre para encontrar propiedades y conjeturas Demostración deductiva de la conjetura

Ejemplos de propuestas de conjetura

- ¿Qué aporta GGB en https://www.geogebra.org/m/egyd9mk8?
- ¿Y en https://www.geogebra.org/m/c3yxhmrx?
- ¿Y en https://www.geogebra.org/m/zGbxdHtM?

Ejemplos

- Ejemplos que aportan lo que aportan: https://www.geogebra.org/m/sgfncqzz
- Y otros que aportan más: https://www.geogebra.org/m/mefnavxx
- Enlaces a actividades de formación del profesorado: https://www.uea.ac.uk/groups-and-centres/a-z/mathtask/english/technology-resources
- Repositorios de recursos y autores reconocidos:
- Repositorio Ministerio https://intef.es/recursoseducativos/matesgg/
- http://www.geogebra.org
- http://docentes.educacion.navarra.es/msadaall/geogebra/index
 x.htm
- http://dmentrard.free.fr/GEOGEBRA/Maths.htm

Las 6 orquestaciones de las TIC en clase de matemáticas – Drijvers, 2010

- 1.Demostración
 técnica: uso que
 hace el profesor de
 un ordenador para
 mostrar su
 explicación sobre
 las herramientas a
 utilizar, mediante
 video-proyección.
- 2. Explicar pantalla: presentar contenido matemático, mediante configuración similar a la dem. técnica. Muy interesante cuando se utilizan tareas de los alumnos como punto de partida a la explicación del profesor.
- 3. Conectar pantallapizarra: desarrollar a
 la vez el trabajo con el
 ordenador y el trabajo
 en la forma que se
 realiza en la pizarra.
 Los alumnos a su vez
 realizarán trabajo en
 paralelo entre
 portátiles y lápiz y
 papel.

Las 6 orquestaciones de las TIC en clase de matemáticas – Drijvers, 2010

4. Discutir pantalla: participación colectiva del grupo en una discusión sobre lo que el profesor muestra en pantalla. La discusión puede comenzar con una propuesta del profesor o basada en el trabajo

de un alumno.

- 5. Descubrir y mostrar: preparando la clase, el profesor identifica razonamientos en los trabajos de casa de los estudiantes y se utilizan en la siguiente sesión de clase, para que los estudiantes los expliquen.
- 6. Trabajo del sherpa: promover la presentación por parte de un alumno, sherpa, de su trabajo al resto de la clase o bien promover el manejo del equipo informático del profesor según sus indicaciones.

Más información...

- ARZARELLO, F. y otros (2002). A cognitive analysis of dragging practices in Cabri environments, Zentralblatt fur Didaktik der Mathematik, 34.3, pp. 66-72.
- ARRANZ, J.M., LOSADA, R., MORA, J.A., SADA, M. (2011) Realidades de GeoGebra Revista SUMA nº 67
- DRIJVERS, P., DOORMAN, M., BOON, P., REED, H., & GRAVEMEIJER, K. (2010).
 The teacher and the tool: instrumental orchestrations in the technology-rich mathematics classroom. *Educational Studies in mathematics*, 75(2), 213-234.
- IRANZO DOMÈNECH, N., & FORTUNY, J. M. (2009). La influencia conjunta del uso de GeoGebra y lápiz y papel en la adquisición de competencias del alumnado. Enseñanza de las Ciencias, 27(3), 433-446.
- LASA, A. & WILHELMI, M. R. (2013). Use of GeoGebra in explorative, explanatory and demonstrative moments. Revista do Instituto GeoGebra Internacional de São Paulo, 2(1), 52-64.
- RIZO, C. y CAMPISTROUS, L. (2007) Geometría dinámica en la escuela, ¿mito o realidad? Revista UNO nº 45.

http://www.geogebra.org

http://docentes.educacion.navarra.es/msadaall/geogebra/index.htm http://dmentrard.free.fr/GEOGEBRA/Maths.htm